Imidazoquinoxaline anticancer derivatives and imiquimod interact with tubulin: Characterization of molecular microtubule inhibiting mechanisms in correlation with cytotoxicity
نویسندگان
چکیده
Displaying a strong antiproliferative activity on a wide variety of cancer cells, EAPB0203 and EAPB0503 belong to the imidazo[1,2-a]quinoxalines family of imiquimod structural analogues. EAPB0503 has been shown to inhibit tubulin polymerization. The aim of the present study is to characterize the interaction of EAPB0203 and EAPB0503 with tubulin. We combine experimental approaches at the cellular and the molecular level both in vitro and in silico in order to evaluate the interaction of EAPB0203 and EAPB0503 with tubulin. We examine the influence of EAPB0203 and EAPB0503 on the cell cycle and fate, explore the binding interaction with purified tubulin, and use a computational molecular docking model to determine the binding modes to the microtubule. We then use a drug combination study with other anti-microtubule agents to compare the binding site of EAPB0203 and EAPB0503 to known potent tubulin inhibitors. We demonstrate that EAPB0203 and EAPB0503 are capable of blocking human melanoma cells in G2 and M phases and inducing cell death and apoptosis. Second, we show that EAPB0203 and EAPB0503, but also unexpectedly imiquimod, bind directly to purified tubulin and inhibit tubulin polymerization. As suggested by molecular docking and binding competition studies, we identify the colchicine binding site on β-tubulin as the interaction pocket. Furthermore, we find that EAPB0203, EAPB0503 and imiquimod display antagonistic cytotoxic effect when combined with colchicine, and disrupt tubulin network in human melanoma cells. We conclude that EAPB0203, EAPB0503, as well as imiquimod, interact with tubulin through the colchicine binding site, and that the cytotoxic activity of EAPB0203, EAPB0503 and imiquimod is correlated to their tubulin inhibiting effect. These compounds appear as interesting anticancer drug candidates as suggested by their activity and mechanism of action, and deserve further investigation for their use in the clinic.
منابع مشابه
Colchicine-like β-acetamidoketones as inhibitors of microtubule polymerization: Design, synthesis and biological evaluation of in vitro anticancer activity
Objective(s): In this study a series of novel colchicine-like β-acetamidoketones was designed and synthesized as potential tubulin inhibitorsMaterials and Methods: The cytotoxicity of the novel synthesized β-acetamidoketones was assessed against two cancerous cell lines including MCF-7 (human breast cancer cells) and A549 (adenocarcinomi...
متن کاملIn-silico Investigation of Tubulin Binding Modes of a Series of Novel Antiproliferative Spiroisoxazoline Compounds Using Docking Studies
Interference with microtubule polymerization results in cell cycle arrest leading to cell death. Colchicine is a well-known microtubule polymerization inhibitor which does so by binding to a specific site on tubulin. A set of 3',4'-bis (substituted phenyl)-4'H-spiro[indene-2,5'-isoxazol]-1(3H)-one derivatives with known antiproliferative activities were evaluated for their tubulin binding modes...
متن کاملIn-silico Investigation of Tubulin Binding Modes of a Series of Novel Antiproliferative Spiroisoxazoline Compounds Using Docking Studies
Interference with microtubule polymerization results in cell cycle arrest leading to cell death. Colchicine is a well-known microtubule polymerization inhibitor which does so by binding to a specific site on tubulin. A set of 3',4'-bis (substituted phenyl)-4'H-spiro[indene-2,5'-isoxazol]-1(3H)-one derivatives with known antiproliferative activities were evaluated for their tubulin binding modes...
متن کاملسنتز، بررسی اثرات سیتوتوکسیک و مطالعه داکینگ دو مشتق ایندول-چالکون
Background and purpose: Chalcones are promising lead for anticancer drug design and discovery. Chalcones with different mechanisms including tubulin polymerization inhibition induce apoptosis in cancer cells. The aim of current work was synthesis of two indole-chalcone derivatives and investigation of their cytotoxic activity against cancer and normal cell lines, as well as molecular docking st...
متن کاملImmunocytochemical Study on Microtubule Reorganization in HL-60 Leukemia Cells Undergoing Apoptosis
Background: Microtubules (MT) are important components of cell cytoskeleton and play key roles in cell motility mitosis and meiosis. They are also the targets of several anticancer agents which indicating their importance in maintaining cell viability. Microtubular reorganization contributing to apoptotic morphology occurs in normal and neoplastic cells undergoing apoptosis induced by cytotoxic...
متن کامل